
What are GLMs?



The Three Components of a GLM

I GLMs extend the ideas of linear regression to all types of outcomes!

I There are three main components of a GLM:

1. A random component, where Yi ∼ f (y ; θ) is exponential family.
2. The linear predictor, ηi = Xiβ, based on the variates of interest.
3. A link function, g(·), such that g(E [Yi |Xi ]) = ηi .

I Can estimate the parameter values using maximum likelihood estimation,
numerically through Fisher-Scoring.
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Exponential Family

For a random variable, Y , we say that it follows an exponential family distribution if it
has a density that can be expressed as

f (y ; θ, φ) = exp
{yθ − b(θ)

a(φ) + c(y , φ)
}
.

We call θ the canonical parameter and φ the scale or dispersion parameter.

The exponential family provide nice score functions, as well as expected information.
These results give us a relationship between the mean and the variance, specifically,

E [Y ] = b′(θ) and var(Y ) = a(φ)b′′(θ).



Common Exponential Families

Distribution Link Function Link Form

Normal Identity g(µ) = µ
Exponential Inverse g(µ) = µ−1

Binomial Logit g(µ) = log
(

µ
1−µ

)
Poisson Log g(µ) = log(µ)

These are the canonical link functions for various exponential family distributions. In
theory, any link function can be used, but these have the nice property that g(µ) = θ,

where µ is the mean of the random variable.



The primary limitation of a GLM, as implemented through
maximum likelihood estimation, is that it requires specification

of the distribution for Y .
This is not strictly necessary!



Quasi-(log)likelihood Review

I Instead of specifying the exponential family, we take:

1. E [Yi |Xi ] = g(ηi) = µi
2. var(Yi |Xi) = φV (µi)

I Then, we define U(µi ; Yi) = Yi−µi
φV (µi ) to be the quasi-score function.

I If we solve,

U(β) =
n∑

i=1

∂µi
∂β

U(µi ; Yi)
!= 0,

then this gives us a CAN estimator for β.
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For a correctly assumed exponential family distribution,
quasi-likelihood is exactly likelihood. However, we got to this

point without any distributional assumptions!



Quasi-likelihood Properties

I Whenever µi is correctly specified, β̂ is consistent.

I We can estimate the variance of β̂, even if V (µi) is incorrect!
I The value of φ can be estimated using a modified method of moments approach.
I This will generally be less efficient than MLE, but it is more robust!
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Summary

I GLMs extend the ideas of linear regression to other types of outcome data.

I GLMs can be fit using MLE by specifying a random (exponential family)
distribution, a linear predictor, and a link function.

I GLMs can be fit without the need for a distributional assumption, by leveraging
quasi-likelihood estimation.

I However, like linear regression models, GLMs assume IID data. Oh no.
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